
Unit 2 Classes, Objects, Constructors, Operator Overloading

Structure in C:

Structure is a combination of same or different data types. Only variables are declared inside a

structure. The initialization of member variables inside the structure is not permitted. Objects can

directly access the data members of the structures.

Syntax: Example:

struct <struct name> struct item

{ {

Variable1; int codeno;

Variable2; float prize;

}; int qty;

 };

Functions are not permitted as members in structure. Outside functions are also able to

access the data members of the structure through the object. Thus, there is no security to data

members declared inside the structure as shown in figure

Limitations of structures:

• Functions are allowed as members of structure in C++, but not in C.

• Direct access to data members is possible. So, by default all the structure members are

public. Hence, security to data or data hiding is not provided.

• The struct data type is treated as built-in type; that is the use of struct keyword is not

necessary to declare objects. But in C it is not possible.

• The data members cannot be initialized inside the structure.

1

Unit 2 Classes, Objects, Constructors, Operator Overloading

Access to structure members: The data members of a structure are accessed by using object

name and operators such as dot (.) or arrow (->). The dot (.) or arrow (->) operators are known as

referencing operators. The dot operator is used when simple object is declared and arrow

operator is used when object is pointer to structure. The access of members can be accomplished

as given in the following syntax:

[Object name][Operator][Member variable name]

When an object is a simple variable, access of members is done as follows:

Object name dot(.) member variable name

Ex. a.codeno

a.price

a.qty

When an object is a pointer to structure then members are accessed as follows:

Ex. a->codeno
a->price

a->qty

Example:

#include<iostream>

using namespace std;
struct item // struct declaration

{

int codeno;

int qty;

};

int main()

{

item a,*b; // object declaration

a.codeno=123; // direct access & initialization of member

variables a.qty= 150;

cout<<“\n With simple variable”;

cout<< “\n Codeno :”<<a.codeno;

cout<<“\n Qty : “<<a.qty;

b->codeno=124; // direct access & initialization of member variables

b->qty= 75;
cout<<“\n With pointer variable”;

cout<< “\n Codeno :”<<a->codeno;

cout<<“\n Qty : “<<a->qty;
return 0;

}

2

Unit 2 Classes, Objects, Constructors, Operator Overloading

Classes

A class is an extended concept similar to structures and the class describes both

properties (data) and behaviors (functions) of objects i.e. class consists of data members and

member functions. Class is not an object but is an instantiate of an object. Class is a blue print

for an object which defines the functionality of an object.

Syntax: Example:

class <name of class> class Employee

{ {

private: int empno;

declaration of variables; char name[20];

prototype declaration or definition of float sal;

function; int deptno;

public: public:

declaration of variables; void readData();

prototype declaration or definition of void showData();

function; };

protected:

declaration of variables;

prototype declaration or definition of

function;

};

The class is a keyword. The declaration of a class is enclosed with curly braces and

terminated with a semicolon. The data members and member functions can be declared in three

sections, that is private, protected and public. The private, public and protected keywords are

terminated with a colon (:).

Declaring Objects:

A class declaration only builds the structure i.e., blue print of an object. The declaration

of objects is same as declaration of variables of basic data types. Defining objects of class data

type is known as class instantiation. Only when objects are created, memory is allocated to them.

Syntax:

name_of_the_class object1, object2,object3;

3

Unit 2 Classes, Objects, Constructors, Operator Overloading

Ex.

int x,y,z; // Declaration of integer variables
char a,b,c; // Declaration of character variables
employee a,b, *c; // Declaration of object or class type variables

An object is an abstract unit with the following properties:

• It is individual.

• It points to a thing, either physical or logical that is identifiable by the user.

• It holds data as well as operation method that handle data.

• Its scope is limited to the block in which it is defined.

Access to class members: The object can access the public data member and member functions

of a class by using dot (.) and arrow (->) operators. The syntax is as follows:

[Object name][Operator][Member name]

To access data members of class the statement would be as follows:

Employee e, *a;

e.readData();

Where e is an object and readData() is a member function. The dot operator is used

because a is a simple object.

In statement

a->readData();

*a is pointer to class item; therefore, the arrow operator is used to access the member.

Access Specifiers:

1. Public: The keyword public can be used to allow objects to access the member variables

of a class directly like structures in C.

2. Private: The private keyword is used to prevent direct access of member variables by the

object. The class by default produces this effect. i.e., a data member can only be

accessed by the member functions of the class.

3. Protected: The members which are declared under protected section, can be accessed by

the member functions of the class and those of the class which is immediately

derived from it. No other class can access the protected data elements.

4

Unit 2 Classes, Objects, Constructors, Operator Overloading

Access Specifiers and their Scope

As described in the table below , the class object can access a public member of the class

directly without the use of member function. The private and protected mechanisms do not allow

an object to access data directly. The object can access private or protected members only

through public member functions of the same class.

Table. Access Limits of class Members

Access Specifiers

 Access Permission

Class Members Outside of the Class Members

 Public Allowed Allowed

 Private Allowed Disallowed

 Protected Allowed Disallowed

/*C++ program using class to declare member variable and functions private, public

and protected section and make an attempt to access them using object.*/

#include<iostream>

using namespace std;

class sample

{

private:

int num;

void show1()

{

cout<<“Inside the private

section”; cout<<“\nEnter a

number:”; cin>>num;

cout<<“Number is:”<<num;

}

public:

int num1;

void show()

{

show1();

cout<<“\n\nInside the public section”;

cout<<“\nEnter a number:”;

cin>>num1;

cout<<“Number is:”<<num1;

show2();

5

Unit 2 Classes, Objects, Constructors, Operator Overloading

}

protected:

int num2;

void show2()

{

cout<<“\n\nInside the protected

section”; cout<<“\nEnter a number:”;

cin>>num2;

cout<<“Number is:”<<num2;

}

};

int main()

{
sample s;

s.show();

return 0;
}

Output:

Inside the private section

Enter a number:4

Number is:4

Inside the public section
Enter a number:5

Number is:5

Inside the protected section

Enter a number:6

Number is:6

Defining Member Functions

In C++ member functions of a class can be defined in two was:

1. Inside the class - The member functions defined inside the class are treated as inline

function. If the member function is small then it should be defined

inside the class. Otherwise, it should be defined outside the class.

2. Outside the class - If function is defined outside the class, its prototype declaration

must be done inside the class.

6

Unit 2 Classes, Objects, Constructors, Operator Overloading

Member Function inside the Class: Member function inside the class can be declared in public

or private section. The following program illustrates the use of a member function inside the

class in public section.

/* C++ program to access private members of a class using member function*/

#include<iostream>

using namespace std;

class item

{

private: // private section

starts int codeno;
float price;

int qty;
public: // public section starts

void show() // member function

{

codeno=125; // access to private members

price=195;

qty=200;

cout<<“\n Codeno =”<<codeno;

cout<<“\n Price =”<<price;

cout<<“\n Quantity=”<<qty;

}

};

int main()

{

item one; // object declaration

one.show(); // call to member function

return 0;

}

Output:

Codeno =125

Price =195

Quantity=200

Private Member Function: In the last section, we learned how to access private data of a class

using public member function. It is also possible to declare a function in private section like data

variables. To execute private member function, it must be invoked by public member function of

7

Unit 2 Classes, Objects, Constructors, Operator Overloading

the same class. A member function of a class can invoke any other member function of its own

class. This method of invoking function is known as nesting of member function. When one

member function invokes other member function, the frequent method of calling function is not

used. The member function can be invoked by its name terminated with a semicolon only like

normal function. The following program illustrates this point.

/* C++ program to declare private member function and access it using

public member function */

#include<iostream>

using namespace std;

class item
{

private: // private section

starts int codeno;
float price;

int qty;
void values() // private member function

{

codeno=125;

price=195;

qty=200;

}

public: // public section starts

void show() // public member function

{

values(); // call to private member

functions cout<<“\n Codeno =”<<codeno;

cout<<“\n Price =”<<price;

cout<<“\n Quantity=”<<qty;

}

};

int main()

{

item one; // object declaration

// one.values(); // not accessible

one.show(); // call to public member function

return 0;

}

Output:

Codeno =125

Price =195

Quantity=200

8

Unit 2 Classes, Objects, Constructors, Operator Overloading

Member Function Outside the class: To define a function outside the class, following care

must be taken.

• The prototype of function must be declared inside the class.

• The function name must be preceded by class name and its return type separated by scope

access operator.

Syntax:

return_type class_name::member_function(parameters list)

/* C++ program to define member function of class outside the class.*/

#include<iostream>

using namespace std;

class item
{

private: // private section starts

int codeno; // member data variables

float price;

int qty;

public: // public section starts

void show (void); // prototype

declaration }; // end of class

void item:: show() // definition outside the class

{

codeno=101;

price=2342;

qty=122;

cout<<“\n Codeno =”<<codeno;

cout<<“\n Price =”<<price;

cout<<“\n Quantity=”<<qty;

}

int main()

{

item one; // object declaration

one.show(); // call to public member function

return 0;

}

Output:

Codeno =101

Price =2342

Quantity=122

9

Unit 2 Classes, Objects, Constructors, Operator Overloading

Characteristics of Member Functions

1. The difference between member and normal function is that the normal function can be

invoked freely, whereas the latter function only by using an object of the same class.
2. The same function can be used in any number of classes. This is possible because

the scope of the function is limited to their classes and cannot overlap one another.
3. The private data or private function can be accessed by public member function. Other

functions have no access permission.
4. The member function can invoke one another without using any object or dot operator.

Outside Member Function as Inline:

By default, all member functions defined inside the class are inline function. The member

function defined outside the class can be made inline by prefixing the keyword inline to function

declarator as shown in figure.

/*Write a program to make an outside function as inline.*/

class item

{

private:

int codeno; // member data variables

float price;

int qty;

public:

void show (void); // prototype

declaration }; // end of class

inline void item:: show() // outside inline function

{

codeno=213;

price=2022;

qty=150;

cout<<“\n Code no =”<<codeno;

cout<<“\n Price =”<<price;

cout<<“\n Quantity=”<<qty;

}

int main()

{

item one; // object declaration

one.show(); // call to public member function (inline)

return 0;

}

10

Unit 2 Classes, Objects, Constructors, Operator Overloading

Output:

Code no =213

Price =2022

Quantity=150

Rules for Inline Functions:

1. Inline function should be used rarely. It should be applied only at appropriate

circumstances.
2. Inline function can be used when the member function contains few statements. For

example,

inline int item :: square (int x)

{

return (x*x);

}

3. If function takes more time to execute, then it must be declared as inline. The following

inline function cannot be expanded as inline.

inline void item:: show()

{

cout<<“\n Codeno =”<<codeno;

cout<<“\n Price =”<<price;

cout<<“\n Quantity=”<<qty;

}

The member function that performs input and output operation requires more times.

Inline functions have one drawback, the entire code of the function is placed at the point

of call in caller function and it must be noted at compile time. Therefore, inline functions

cannot be placed in standard library or run time library.

Data Hiding or Encapsulation

Data hiding is also known as encapsulation. An encapsulated object is often called as an

abstract data type. We need to encapsulate data, because programmer often makes various

mistakes and the data get changed accidentally. Thus, to protect data, we need to construct a

secure and impassable wall to protect the data. Data hiding is nothing but making data variable

of the class private. Thus, private data cannot be accessed directly by the object. The objects

using public member functions of the same class can access the private data of the class. The

keywords private and protected are used for hiding the data.

11

Unit 2 Classes, Objects, Constructors, Operator Overloading

Classes, Objects, and Memory

Objects are the identifiers declared for class data type. Object is a composition of one

more variables declared inside the class. Each object has its own copy of public and private data

members. An object can access to its own copy of data members and have no access to data

members of other objects.

Only declaration of a class does not allocate memory to the class data members. When an

object is declared, memory is reserved for only data member and not for member functions.

/* C++ program to declare objects and display their contents. */

#include<iostream>

using namespace std;

class month
{

public:
char *name;

int days;
}; // end of

class int main()

{

month M1,M3; // object declaration

M1.name=”January”; M1.days=31;

M3.name=”March”;
M3.days=31; cout<<“\n

Object M1 ”;
cout<<“\n Month name : ”<<M1.name <<“ Address

:”<<(unsigned)&M1.name;

cout<<“\n Days :” <<M1.days <<“\t\t Address : ”<<(unsigned)&M1.days;

cout<<“\n\n Object M3 ”;

cout<<“\n Month name : ”<<M3.name <<“\t Address :

”<<(unsigned)&M3.name;

cout<<“\n Days :” <<M3.days <<“\t\t Address : ”<<(unsigned)&M3.days;

return 0;

}

12

Unit 2 Classes, Objects, Constructors, Operator Overloading

Output:

Object M1

Month name : January Address :65522

Days : 31 Address : 65524

Object M3

Month name : March Address : 65518

Days : 31 Address : 65520

Explanation: M1 and M3 are objects of class month. Separate memory is allocated to

each object. The contents and address of the member variables are displayed in the

output. Figure shows it more visibly.

Fig. Memory occupied by objects

13

Unit 2 Classes, Objects, Constructors, Operator Overloading

static Member Variables

A data member of a class can be qualified as static. A static member variable has certain special

characteristics. These are:

• It is initialized to zero when the first object of its class is created.

• Only one copy of that member is created for the entire class and is shared by all

the objects of that class, no matter how many objects are created.

• It is visible only within the class, but its lifetime is the entire program.

• The static data members are associated with the class and not with any object.

• Static variables are normally used to maintain values common to the entire class.

Syntax:

1. static <variable definition>

; Ex.
static int c; // For example in class item

int item::c=10;

2. static <function definition>;

14

Unit 2 Classes, Objects, Constructors, Operator Overloading

/* C++ Program illustrates the use of a static data member.*/

#include <iostream>

using namespace std;

class item

{
static int count;

int number;

public:
void getdata(int a)

{
number = a;

count ++;
}

void getcount(void)

{

cout << "Count: "<< count <<"\n";

}

};

int item :: count;

int main()

{

item a,b,c;

a.getcount();

b.getcount();

c.getcount();

a.getdata(100);

b.getdata(200);

c.getdata(300);

cout << "After reading data"<<"\n";

a.getcount();

Output: b.getcount();

c.getcount(); Count: 0

return 0; Count: 0

} Count: 0

 After reading data

 Count: 3

 Count: 3

 Count: 3

15

Unit 2 Classes, Objects, Constructors, Operator Overloading

static Member Functions

Like member variables, function can also be declared as static. When a function is defined as

static, it can access only static member variables and functions of the same class. The not-static

members are not available to these functions. The static member function declared in public

section can be invoked using its class name without using its objects. The programmer must

follow the following points while declaring static function:

1. Just one copy of a static member is created in the memory for entire class. All objects of

the class share the same copy of static member.

2. static member function can access only static data members or functions.

3. A static member function can be called with the class name as follows:

class-name :: function-name;

class-name :: function-name;

In the following code the static function getcount() displays the number of objects created

till that moment.

#include <iostream>

using namespace std;

class item

{
static int count;

int number;

public:
void getdata(int a)

{
number = a;

count ++;
}

void getcount(void)

{

cout << "Count: "<< count <<"\n";

}

static void show_count()

{

cout << "Count: "<< count <<"\n";

16

Unit 2 Classes, Objects, Constructors, Operator Overloading

}

};

int item :: count;

int main()

{
item a,b,c;

item::show_count();

a.getdata(100);

b.getdata(200);

c.getdata(300);

cout << "After reading data"<<"\n";

item::show_count();

return 0;
}

Output:

Count: 0

After reading data

Count: 3

Array of Objects

Arrays are collection of similar data types. Arrays can be of any data type including user-

defined data type created using struct, class, and typedef declarations. We can also create an

array of objects. The array elements are stored in continuous memory locations as shown in

figure. Consider the following example.

class player

{

private:

char name [20];

int age;

public:

void input (void);

void display (void);

};

player cricket[5];

17

Unit 2 Classes, Objects, Constructors, Operator Overloading

/* C ++ program to declare the array of objects. Initialize and display the contents

of arrays.*/
#include <iostream>

using namespace std;

class player
{

char name [20];

int age;

public:

void input (void);

void display (void);

};

void player :: input()

{

cout<<“\n Enter Palyer name :

”; cin>>name;

cout<<“ Age :

”; cin>>age;

}

void player :: display()

{
cout<<“\n Player name : ”<<name;

cout<<“\n Age : ”<<age;
}

int main()

{

player cricket[3]; // array of objects

cout<<“\n Enter Name and age of 3 players ”;

for (int i=0;i<3;i++)

cricket[i].input();

cout<<“\n The Data Entered by you is ”;

for (i=0;i<3;i++)

cricket[i].display();

return 0;

}

Output:

Enter Name and age of 3 players

Enter Palyer name : Sachin Age : 29

Enter Palyer name : Rahul Age : 28

Enter Palyer name : Saurav Age : 30

The Data Entered by you is

Player name : Sachin Age : 29

Player name : Rahul Age : 28

Player name : Saurav Age : 30

18

Unit 2 Classes, Objects, Constructors, Operator Overloading

Objects as Function Arguments

The following are the three methods to pass argument to a function:

• Pass-by-value – A copy of object (actual object) is sent to function and assigned to the

object of callee function (formal object). Both actual and formal copies of objects are

stored at different memory locations. Hence, changes made in formal object are not

reflected to actual object.

• Pass-by-reference – Address of object is implicitly sent to function.

• Pass-by-address – Address of the object is explicitly sent to function.

In pass-by-reference and pass-by-address methods, an address of actual object is passed to the

function. The formal argument is reference/pointer to the actual object. Hence, changes made in

the object are reflected to actual object. These two methods are useful because an address is

passed to the function and duplicating of object is prevented.

/*Write a C++ Program to add two complex numbers by passing objects as parameters*/

Example 1. Pass-by-Value

#include <iostream>

using namespace std;

class complex

{

private:
float real;

float imag;
public:

void read ();

void show ();
void sum(complex c1,complex c2);

};

void complex::read ()

{

cout<<"enter real part";

cin>>real;

cout<<"enter imaginary

part"; cin>>imag;
}

19

Unit 2 Classes, Objects, Constructors, Operator Overloading

void complex::show ()

{

cout<<"The Complex Number is:"<<real<<"+i"<<imag<<endl;

}

void complex::sum(complex c1,complex c2)

{

real=c1.real+c2.real;//here real represents c3's real

imag=c1.imag+c2.imag;//here imag represents c3's imag

}

int main ()

{

complex c1,c2,c3;

c1.read();

c2.read();

c3.sum(c1,c2);

c3.show();

return 0;

}

Output:

enter real part 2

enter imaginary part: 3

enter real part: 3

enter imaginary part: 4

The Complex Number is:5+i7

Example 2. Pass-by-Address

#include <iostream>

using namespace std;

class complex

{
float real;

float imag;
public:

void read ();

void show ();
void sum(complex *,complex *);

};

20

Unit 2 Classes, Objects, Constructors, Operator Overloading

void complex::read ()

{

cout<<"enter real part";

cin>>real;

cout<<"enter imaginary

part"; cin>>imag;
}

void complex::show ()

{

cout<<"The Complex Number is:"<<real<<"+i"<<imag<<endl;

}

void complex::sum(complex *c1,complex *c2)

{
real=c1->real+c2->real;//here real represents c3's real

imag=c1->imag+c2->imag;//here imag represents c3's imag
}

int main ()

{

complex c1,c2,c3;

c1.read();

c2.read();

c3.sum(&c1,&c2);

c3.show();

return 0;

}

Output:

enter real part 2

enter imaginary part: 3

enter real part: 3

enter imaginary part: 4

The Complex Number is:5+i7

Example 3. Pass-by-Reference

class complex

{
float real;

float imag;
public:

void read ();

void show ();
void sum(complex &,complex &);

};

21

Unit 2 Classes, Objects, Constructors, Operator Overloading

void complex::read ()

{

cout<<"enter real part";

cin>>real;

cout<<"enter imaginary

part"; cin>>imag;

}

void complex::show ()

{

cout<<"The Complex Number is:"<<real<<"+i"<<imag<<endl;

}

void complex::sum(complex &c1,complex &c2)

{

real=c1.real+c2.real;//here real represents c3's real

imag=c1.imag+c2.imag;//here imag represents c3's imag
}

int main ()

{

complex c1,c2,c3;

c1.read();

c2.read();

c3.sum(c1,c2);

c3.show();

return 0;

}

Output:

enter real part 2

enter imaginary part: 3

enter real part: 3

enter imaginary part: 4

The Complex Number is:5+i7

22

Unit 2 Classes, Objects, Constructors, Operator Overloading

Friend function and Friend class

The main concept of OOP paradigm is data hiding and data encapsulation. Whenever data

variables are declared in a private category of a class, these members are restricted from

accessing by non-member functions. The private data values can be neither read nor written by

non-member functions. If an attempt is made directly to access these members, the compiler will

display an error message “inaccessible data type”. The best way to access private member is to

change access specifier to public group. But it violates the concept of data hiding. To solve this

problem, a friend function/class can be declared to have access these data members. Friend is a

special mechanism for letting non-member functions access private data. The keyword friend

inform the compiler it is not a member of the class.

The general syntax is:

friend return_type function_name(parameters);

Example: friend function

class myclass int sum(myclass a)
{ {

int num1,num2; int n=a.num1+a.num2;

public: return n;

myclass(int,int); }

void printvalues(); int main() {

friend int sum(myclass); myclass m(10,20);
}; m.printvalues();

myclass::myclass(int n1,int n2) cout<<"Sum of values in
{ object:"<<sum(m)<<endl;

num1=n1; return 0;

num2=n2; }
}

void myclass::printvalues()
{

cout<<"first:"<<num1<<endl;

cout<<"second:"<<num2<<endl;

}

23

Unit 2 Classes, Objects, Constructors, Operator Overloading

Example: friend class

#include <iostream>

using namespace std;

class myclass

{

int num1,num2;

public:
myclass(int,int);

void printvalues();

friend class math;
};

myclass::myclass(int n1,int n2)

{

num1=n1;

num2=n2;

}

void myclass::printvalues()

{
cout<<"first value is:"<<num1<<endl;

cout<<" second is:"<<num2<<endl;
}

class math

{
public:

int sum(myclass);

int multiply(myclass);

};
int math::sum(myclass obj)

{
return obj.num1+obj.num2;

}
int math::multiply(myclass obj)

{
return obj.num1*obj.num2;

}
int main() {

myclass mc(10,20);

math m;
cout<<"The sum of two values in myclass

object:"<<m.sum(mc)<<endl;

cout<<"The multiplication of two values in

myclass object:"<<m.multiply(mc)<<endl;

return 0;

}

24

Unit 2 Classes, Objects, Constructors, Operator Overloading

Constructors:

A constructor is defined to be a special member function, which helps in initializing an object

while it is declared.

Characteristics of constructors:

(1) Constructor has the same name as that of the class it belongs.
(2) It should be a public member.

(3) It is invoked implicitly at the time of creation of the objects.

(4) Constructors have neither return value nor void.

(5) The main function of constructor is to initialize objects.

(6) Constructor can have default and can be overloaded.

(7) The constructor without arguments is called as default constructor.

Types of Constructors:

Constructors are classified into three types:

1. Default constructor
2. Parameterized constructor

3. Copy constructor

4. Dynamic Constructor

Default Constructor:

A constructor which does not take any arguments is called the default constructor. Suppose A

is a class, the default constructor in the class takes the following form:

A()

{

Statements;

}

The statements within the body of the function assign the values to the member data of the class.

Note that the name of the constructor is same as the class name and no return type is specified

not even void.

25

 Unit 2 Classes, Objects, Constructors, Operator Overloading

 Example:

 #include <iostream> void construct::display()

 using namespace std; {

 class construct cout<<"The first value is:"<<x<<endl;

 { cout<<"The second value

 int x; is:"<<y<<endl;

 int y; }

 public:

 construct(); int main() {

 void display();

 }; construct dc;

 construct::construct() dc.display();

 { return 0;

 x=10; }

 y=20;

 }

Parameterized Constructor: The constructor that can take arguments are called parametrized

constructors.

Example:

#include <iostream> void construct::display()
using namespace std; {

 cout<<"The first value is:"<<x<<endl;

class construct cout<<"The second value

{ is:"<<y<<endl;

int x; }

int y;

public: int main() {

construct(int,int);

void display(); construct pc(10,20),pc1(100,200);

}; pc.display();

construct::construct(int val1,int val2) pc1.display();

{ return 0;

x=val1; }

y=val2;

}

26

Unit 2 Classes, Objects, Constructors, Operator Overloading

Multiple Constructors in a class/Constructor Overloading:

When more than one constructor is defined in a class, we say that constructor is overloaded.

#include <iostream>

using namespace std;

class construct
{

int x;

int y;
public:

construct();

construct(int);

construct(int,int);

void display();
};

construct::construct()

{

x=10;y=20;

}

construct::construct(int val1)

{

x=val1;

y=20;

}

construct::construct(int val1,int val2)

{

x=val1;

y=val2;

}

void construct::display()

{

cout<<"The first value is:"<<x<<endl;

cout<<"The second value

is:"<<y<<endl;

}

int main() {

construct obj1; construct

obj2(100); construct

obj3(100,200); //object

1 obj1.display();

//object 2

obj2.display();

//object 3

obj3.display();

return 0;

}

27

Unit 2 Classes, Objects, Constructors, Operator Overloading

Copy Constructor:

The copy constructor is a constructor which creates an object by initializing it with an object

of the same class, which has been created previously. The copy constructor is used to:

• Initialize one object from another of the same type.

#include <iostream> x=obj.x;

using namespace std; y=obj.y;

class construct }

{ void construct::display()

int x; {

int y; cout<<"The first value is:"<<x<<endl;

public: cout<<"The second value

construct(int,int); is:"<<y<<endl;

construct(construct &); }

void display();
int main() { };

construct::construct(int val1,int val2)

{ construct obj1(10,20);

x=val1; construct obj2(obj1);

y=val2; obj1.display();

 obj2.display();

} return 0;

construct::construct(construct &obj) }

{

Dynamic Constructor:

Sometimes we may require to dynamically allocate memory for objects during their creation.

This is done with the help of dynamic constructors. The dynamic constructors use the new

operator to allocate memory for objects during runtime. A Constructor which allocates memory

and initializes an object during runtime is called a dynamic constructor.

Example:

Class Dynamic
{ int *a;

public:
Dynamic(int n)

{

28

Unit 2 Classes, Objects, Constructors, Operator Overloading

a=new int[n];

}

};

Here, the member data a of the class Dynamic is a pointer to int type. The constructor takes

an argument n of int type and allocates memory for n integers. The address of the first element

in the dynamic array is assigned to the pointer a.

Example:

#include <iostream>

using namespace std;

class integer
{

int *a;

int n;

public:

integer(int m)

{

n=m;

a=new int[m];

}

void display()

{
int i;

for(i=0;i<n;i++)
cout<<a[i]<<endl;

}

void accept()

{
int i;

for(i=0;i<n;i++)
cin>>a[i];

}

};

int main() {

integer v(5),v1(10);

cout<<"Enter elements";

v.accept();

cout<<"Display

elements"; v.display();

cout<<"Enter elements";

v1.accept();

cout<<"Display

elements"; v1.display();

return 0;

}

29

Unit 2 Classes, Objects, Constructors, Operator Overloading

Destructors:

A destructor is defined to be a special member function of a class, which helps in releasing the

memory occupied by an object when it goes out of scope.

Characteristics:

1. It should be public member

2. The name of the destructor should as that of class name and it is preceded with ~.

3. It cannot take any arguments

4. No return type should be specified including void.

5. delete operator is to be used to de-allocate the memory allocated by new operator in the

constructor.

Example:

#include <iostream>

using namespace std;

int count=0;

class integer
{

int x;

public:

integer(int y)

{

count++;

cout<<"object"<<count<<"created<<endl";

x=y;

}

~integer()

{

cout<<"object -"<<count<<"

destroyed"<<endl; count--;
}

};

int main() {

Output:Object 1 created integer a(10),b(20);

return 0; Object 2 created

} Object -2 destroyed

 object -1 destroyed

30

Unit 2 Classes, Objects, Constructors, Operator Overloading

The const Member Functions

The member functions of a class can also be declared as constant using const keyword.

The constant functions cannot modify any data in the class. The const keyword is suffixed to the

function prototype as well as in function definition. If these functions attempt to change the data,

compiler will generate an error message.

/*Write a program to declare const member function and attempt any operation within it*/

#include<iostream.h>
#include<conio.h>

class A
{

int c;

public :

void add (int a,int b) const
{

// c=a+b; // invalid statement a+b;

cout<<“a+b = ”<<a+b;

}

};

int main()

{

A a;

a .add(5,7);

return 0;

}

Output:

a+b = 12

Explanation: In the above program, the class A is declared with one member variable (c) and

one constant member function add(). The add() function is invoked with two integers. The

constant member function cannot perform any operation. Hence, the expression c=a+b will

generate an error. The expression a+b is valid and cannot alter any value.

31

Unit 2 Classes, Objects, Constructors, Operator Overloading

The volatile Member Function:

In C++, one can declare a member function with volatile specifies. This step leads to call

safely the volatile object. Calling volatile member function with volatile object is safe. This

concept is supported with the following programming example.

/*Write a program to call a volatile member function from a volatile object.*/

#include<iostream.h>
#include<conio.h>

class A
{

int x;

public:
void f() volatile // The volatile member function

{

int x=10;

cout<<“Value of x:”<<++x;

}

};

int main()

{

volatile A c; // The c is a volatile object

c.f(); // Call a volatile member function safely

return 0;

}

Output:

Value of x:11

Explanation: The volatile member function f() is called from a volatile object c and the value

of x is initialized to 10. Its value is increased by one and displayed on the screen.

32

Unit 2 Classes, Objects, Constructors, Operator Overloading

Operator Overloading

C++ frequently uses user-defined data types such as classes and structures that are a

combination of one or more basic data types. User-defined data types created from class or struct

are nothing but a combination of one or more variables of basic data types. The compiler knows

how to perform various operations using operators for the built-in types; however, for the objects

those are instance of the class, the operation routine must be defined by the programmer.

For example, in traditional programming languages the operators such as +, −, <=, >=,

etc. can be used only with basic data types such as int or float. The operator + (plus) can be

used to perform addition of two variables, but the same is not applicable for objects. The

compiler cannot perform addition of two objects. The compiler would throw an error if addition

of two objects is carried out. The compiler must be made aware of the addition process of two

objects. When an expression including operation with objects is encountered, a compiler

searches for the definition of the operator, in which a code is written to perform an operation

with two objects. Thus, to perform an operation with objects we need to redefine the definition of

various operators. For example, for addition of objects A and B, we need to define operator +

(plus). Redefining the operator plus does not change its natural meaning. It can be used for both

variables of built-in data type and objects of user-defined data type and this is called as operator

overloading.

Operator overloading is one of the most valuable concepts introduced by C++ language.

It is a type of polymorphism. Polymorphism permits to write multiple definitions for functions

and operators.

Operator Overloading Syntax:

Syntax:

return_type operator operator_symbol (parameters)

{

statement1;

statement2;

}

The keyword operator defines a new action or operation to the operator.

33

Unit 2 Classes, Objects, Constructors, Operator Overloading

Example:

Complex operator + (Complex c2)

{
Complex c3;

c3.real=real+c2.real;

c3.imag=imag+c2.imag;

return c3;
}

Operator overloading can be carried out in the following steps.

1. Define a class which is to be used with overloading operations.
2. The public declaration section of the class should contain the prototype of the function

operator().

3. Define the definition of the operator() function with proper operations for which it is

declared.

34

